

UNIVERSITY OF GOTHENBURG

RE for Large-Scale Agile System Development (#27)

Sprint 14 Reporting Workshop

Eric Knauss, Jennifer Horkoff, Grischa Liebel, Rashidah Kasauli, Rebekka Wohlrab

About the Project

RE for Large-Scale Agile System Development

Project mission: Accelerate large-scale agile system development by improving management of requirements and related knowledge.

- Chart challenges and best practices / methods / tools
- Support flow and management of knowledge about strategic and operational requirements
- Balance just-in-time and long-term as well as customer and system requirements knowledge

Sprint 14 Goals

- Prioritize themes for workshop → managing requirements knowledge flow
- Several focused case studies with individual companies
- Deliverables
 - Guidelines for managing the flow of requirements knowledge
 - Report on a variety of focused case studies
 - Publications

Sprint 14 Accomplishments

- Significant potential speed-up through new RE approaches, according to managers [RE]
- A suitable RE strategy is **context specific** [REFSQ]
- SAFe and LeSS provide insufficient support

CHALMERS

• Future customer-supplier collaboration requires new approaches to transparency and contracts [ICSE]

Our work also resulted in emerging guidelines, approaches, and tools

- Guidelines for managing system artifacts (boundary objects vs. locally relevant) [ICSSP]
- Tool to allow XFTs updating system requirements (T-Reqs) [RE tools]
- Approach to design a suitable RE strategy for agile dev. of safety critical systems [SEAA]
- RE approach to support API strategies [ICSOB]

8 Publications RE (2x: research, tools track) REFSQ ICSSP (best paper) **SEAA** Euromicro ICSOB ICSE (SEIP, Poster)

Focus in breakout session – Boundary objects Other topics: Online dissemination WS (June-20)

Sprint 15 Goal

Our goal for Sprint 15 is to continue with what we feel is a very successful approach

- Focused cross-company workshop on RE practices
 - Focus to be selected in kickoff workshop
- Complementary focused case studies with individual companies
 - Data requirements for systems of systems (beyond functional specification)
 - RE strategy for agile development of safety-critical systems
 - Interfaces as RE boundary objects
 - System requirements modeling by developers
 - More?

Sprint 15 Plan	Activities	Conferences
August/September	Kickoff workshop	RE conferenceSEAA Euromicro
October	Run Workshop: - Cross-company - Focused case studies	
November	Compile results Cross-company WS	Agile automotive PEPProfes
Deliverables	Report: Guidelines and best practices Report: Smaller case studies	Publications

Selected Results

SWC #27, Sprint 14

Sign up to our pre-summer dissemination workshop (video conference only)

Scan me

https://doodle.com/poll/g6ivqscz2dqk93fk

Ågren, M.; Knauss, E.; Heldal, R.; Pelliccione, P.; Malmqvist, G.; Boden, J.: The Manager Perspective on Requirements Impact on Automotive Systems Development Speed. In: Proceedings of 26th Int. Requirements Engineering Conf. (RE), Banff, Alberta, Canada, 2018

van der Valk, R.; Pelliccione, P.; Lago, P.; Heldal, R.; Knauss, E. and Juul, J.: Transparency and Contracts: Continuous Integration and Delivery in the Automotive Ecosystem. Proceedings of 40th Int. Conference on Software Engineering (ICSE), SEIP Track, Gothenburg, Sweden, 2018

Boundary Objects in Agile Practices: Continuous Management of Systems Engineering Artifacts in the Automotive Domain

Rebekka Wohlrab, Patrizio Pelliccione, Eric Knauss, Mats Larsson Chalmers | University of Gothenburg, Systemite AB June 7, 2018 wohlrab@chalmers.se

Agile systems engineering and documentation

Automotive companies want to adopt agile methods for systems engineering. But...

100 MLOC of software in modern cars [1,2]

100.000s of requirements

Number of ECUs growing to more than 100 [1]

Around 7000 bus signals [1]

In large-scale agile:

Finding the "right" amount of documentation is challenging [4] Lack of case studies and practical guidance [3,5]

Enormous amount of artifacts and traceability!

How to manage this information in a continuous way?

[1] Alminger, A.. 2017. Architecting the next generation of vehicles. Presentation at WASP PhD School.

[2] Ebert, C., & Favaro, J. 2017. Automotive Software. IEEE Software, 34(3), 33-39.

[3] Kajko-Mattsson, M. 2008. Problems in agile trenches. In ESEM'08.

[4] Rüping, A. 2003. Agile Documentation: A Pattern Guide to Producing Lightweight Documents for Software Projects (1 ed.). Wiley Publishing.

[5] Dingsøyr, T., Moe, N., Faegri, T., Seim, E.. 2017. Exploring software development at the very large-scale: a revelatory case study and research agenda for agile method adaptation. Empirical Software Engineering._____

SYSTEMITI

Research Questions and Method

- RQ1: What are **practices** to manage artifacts in agile automotive systems engineering?
- RQ2: What practical challenges exist with managing systems engineering artifacts in agile automotive contexts?
- Develop guidelines for practitioners

STEMI

Design-science method [6]

Design-science method

SYSTEMITE

A, B, C, E: automotive OEMs, F: automotive supplier, D: supplier of an information management tool used in automotive

Participants with roles and experience

	Company	Role	<u>Experience</u>
1	А	Logical architect	> 20 years
2	А	Chief architect	> 17 years
3	А	Product owner	> 15 years
4	А	Requirements manager	19 years
5	А	Process manager	> 25 years
6	А	Team leader of funct. dev.	17 years
7	А	Product owner	15 years
8	А	Scrum master	> 2 years
9	В	Software architect	9 years
10	С	Systems architect	20 years
11	D	Chief Technical Officer	> 30 years
12–28	E & F	Mainly testers	1–30 years
29–53	E & F	Mainly developers	1–30 years

+ 41 anonymous questionnaire respondents

A, B, C, E: automotive OEMs, F: automotive supplier, D: supplier of an information management tool used in automotive

5

YSTEN/ITE

RQ1: Boundary Objects

"Boundary objects are objects which are both plastic enough to adapt to local needs and constraints of the several parties employing them, yet robust enough to **maintain a common identity across sites**." [33]

[33] Susan Leigh Star and James R. Griesemer. 1989. Institutional Ecology, 'Translations' and Boundary Objects: Amateurs and Professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39. Social Studies of Science 19, 3 (1989), 387–420.

SYSTEMITE

RQ2: Challenges

It is challenging for us to deal with...

Guidelines

Conclusions

- Distinguish between boundary objects and locally relevant artifacts
- Helps to identify important artifacts and align the work of different teams

Next steps:

Tailor guidelines to concrete artifacts (e.g., for architecture)

Implementing tool support to identify and manage boundary objects

SystemWeaver®

SYSTEMITE