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Requirements driven 
development
- Regulatory features
- Competitor parity features
- Commodity features

Outcome/data driven 
development
- Value hypothesis
- New ”flow” features
- Innovation

AI driven development
- Minimize prediction errors
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Statistical comparison of black box algorithms
for optimization of expensive functions

• Large scale comparison between algorithms
– Over 25 algorithms
– Over 170 benchmark functions
– Different measurements metrics
– Different conditions (noise, budget etc…)

• Applications
– Field optimization
– Hyperparameter tuning of ML models
– AutoML



Business transformations through ML 
experiments



Data Management Challenges



Data pipeline robustness
• A robust data pipeline can be an effective 

solution to solve some of the data management 
problems

• RQ: How to keep a data pipeline healthy?
– Automation of the pipeline
– Monitoring of each step of the pipeline
– Investigation of the potential errors that might occur 

at each step and implement detection mechanism
– Implementation of automated alerting mechanisms 

and mitigation actions



DataOps
• DevOps manages code, infrastructure and tools
• DataOps adds a fourth dimension – data
– DataOps automates the sequence of steps taken to 

deliver value to the customer where possible, 
minimize waste and redundancy, and stimulate 
continuous improvement

– DataOps can support data teams evolve from 
environments of data silos, backlogs, and quality 
control issues to an agile, automated, and accelerated 
data cycle that continuously improves and delivers 
value to the customers



Dynamic Data Management Challenges*
Focus:
• Challenges involved in storing and preparing data for AI applications in embedded 

systems
• Collection, storing, pre-processing of data and training of AI applications in 

distributed architectures 
• Data storage and analysis (edge – server - cloud)
Challenges:
• Expensive and error-prone collection of sensor data
• Difficulties in maintaining semantics of continuously evolving data
• Unclean and noisy data
• Restrictive security constraints
• Difficulties in interpreting heterogeneous and dynamic data sets
• Lack of well-defined purpose and goals

*Ouhaichi H., Olsson H.H., Bosch J. (2019) Dynamic Data Management for Machine Learning in Embedded Systems: A Case Study. In: 
Hyrynsalmi S., Suoranta M., Nguyen-Duc A., Tyrväinen P., Abrahamsson P. (eds) Software Business. ICSOB 2019. Lecture Notes in Business 
Information Processing, vol 370. Springer, Cham



Architectural distribution framework

Key factors:
• Latency
• Privacy
• Convergence
• Accuracy
• Communcation cost
• Computational resources
• Data quality
• …
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Developing ML/DL Models: A Design Framework

• Organizations integrate ML/DL technologies in software-intensive systems to increase
value delivery

• Despite the level of expertise, developing high-performing and accurate ML/DL is a
challenging task

• Need for a structured and systematic design process to build and operate ML/DL models
• Design process that identifies the phases involved in development of ML/DL models, the

iterations that occur in between these phases and the challenges associated with each
phase

Design process of ML/DL models



Phases, activities and challenges when developing ML/DL models
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Challenges ML/DL Evolution
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